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Abstract. We study the one spatial dimensional, 6-velocity Broadwell model with four 
identical densities and three independent ones. We determine 'solitons' (one-dimensional 
shock wave solutions) and 'bisolitons' (two-dimensional, space plus time solutions) which 
are rational fractions with one or two exponential variables. 

We obtain three classes of positive exact solutions in 1 + 1 dimensions (space x, time 
t ) .  The first one is periodic in the space variable and for large time the solutions correspond 
to propagating damped linear waves. The second is positive only along one semi x axis 
while the third, positive along the whole x axis, represents non-planar damped shock waves. 

Using the same tools in a companion paper, for the discrete 2-velocity models, we 
obtain in a two-dimensional space the first two classes of solutions mentioned above. This 
suggests that, for the discrete Boltzmann models, general methods exist for the determina- 
tion of non-trivial exact solutions. 

1. Introduction 

It is generally thought that the study of discrete Boltzmann models may provide useful 
hints for the present problems in kinetic theory. The most popular discrete model is 
the Broadwell (1964) one. The general Broadwell model is a discrete 6-velocity model 
of the Boltzmann equation (BE) in three spatial dimensions. In general a simplified 
one-dimensional version is studied (which is the one originally introduced by Broadwell 
for the determination of explicit planar shock solutions). Let us call V and W the 
densities for particles with velocities (*l, 0,O) and assume the same density for those 
with velocities (0, *l ,  0) and (0, 0, *l) .  In only one spatial x dimension, the resulting 
equations are: 

V , + V , =  w,- w , = - 2 z , = z 2 - w .  (1.1) 

The H-theorem is satisfied and there exist two independent linear differential relations 
which correspond to the conservation of mass ( N  = V +  W+4Z)  and momentum 
(current J = V -  W): 

N, + J, = 0 J , +  V,+ W, = O .  (1.2) 

Besides its original interest in the shock-wave problem, this model has been 
thoroughly studied, as a laboratory tool of the discrete BE, for the proofs of global 
existence, uniqueness and boundedness properties of the solutions (Nishida and Miura 
1974, Crandall and Tartar 1976, Inoue and Nishida 1976, Caflish and Papanicolaou 
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1979, Tartar 1980, Illner 1984, Beale 1985). These results were extended by Cabannes 
to his 14-velocity model (Cabannes 1978, Gatignol 1975). 

Our aim is to determine non-trivial classes of physically acceptable solutions of 
(1.1) in 1 + 1 dimensions (space x, time t ) .  For obvious reasons, the mathematical 
results were obtained for ‘smooth’ initial data. For instance the densities must be 
integrable when 1x1 + cc and here in general the explicit solutions will not satisfy this 
requirement. We find essentially two classes of two-dimensional solutions: either 
periodic in x or positive and non-periodic along the full x axis (a larger class contains 
positive solutions along the semi x axis). Once more we recall (a fact sometimes 
forgotten) that the primary motivation of the Broadwell discrete model was the 
construction of a simplified version of the B E  leading to explicit planar (one- 
dimensional) shock solutions. It seems natural to investigate in higher dimensions 
(two for (1.1)) whether other explicit solutions could represent physically relevant 
situations (in particular if there exist generalisations of the planar shock solutions). 
Here the periodic solutions, for large times, represent damped propagating planar 
waves. They could correspond to damped sound waves, but the current J has in 
general a non-vanishing asymptotic limit when t is infinite. For the particular solutions 
for which this limit is zero then the waves are non-propagating with time. The positive 
two-dimensional solutions on the full x axis are the non-planar generalisations of the 
planar shock profiles. The shocks are damped with increasing time and the densities 
relax towards Maxwellian equilibrium states. 

In a companion paper (Cornille 1987), with the same tools as here, we study 
two-dimensional solutions of the 2-velocity discrete models (Illner 1979). We find 
damped sound wave periodic solutions but not non-periodic solutions positive along 
the whole x axis (the positivity difficulty is already present for the one-dimensional 
shock waves). Different positivity properties exist for 2- and 3-discrete models. 
However they can be studied with the same algebraic method. 

Here we face (1.1) as a genuine non-integrable equation. We define ‘solitons’ and 
‘bisolitons’ as rational solutions with only one or two exponential variables wi = 
di exp( yix + pi t ) .  This method was successfully applied to the spatially homogeneous 
BE (Cornille and Gervois 1982, Cornille 1984), leading to the determination of a whole 
class of non-integrable equations sharing common properties (factorisation of the 
linear operator and bisoliton denominators without the soliton coupling term). 
Unfortunately the discrete Boltzmann models which are hyperbolic semi-linear 
equations, do not belong to that class. We must again investigate the class of possible 
bisolitons. The main difference between continuous and discrete B E  is that for the 
second class the distributions themselves satisfy the linear conservation laws (we do 
not have to integrate over the velocity variable). Consequently these models are weakly 
non-linear. For instance for the 3-density Broadwell model (as well as for the 4-density 
one) the determination of the class of possible bisolitons is performed with the linear 
relations alone (see appendix 1). This possible class for 3 or 4 densities being the 
same as for 2, it follows that the non-integrable hyperbolic semi-linear equations define 
a particular class of non-linear equations with common properties. 

In 0 2 we study the solitons and the possible class of bisolitons. The solitons are 
self-similar solutions in the variable exp( yx + p t )  and represent planar shock waves. 
The full class of shock solutions is given and we recall that the particular Broadwell 
explicit soliton solution was an infinite-Mach-number shock wave. The bisolitons must 
be such that when one of the two soliton components is zero, then we recover the 
other soliton component wi = di exp( yix + pi t ) .  In appendix 1 trying denominators of 
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the type 1 + Z w ,  + p w , w 2 ,  we find at the linear differential level of the 3- or 4-density 
models that only p = 1 is not excluded. At this stage the bisoliton is only the sum of 
two solitons and the non-linear constraints will provide the coupling between them. 

In Q 3 we study the class of bisolitons with y i ,  p,  complex and conclude that positivity 
along the full x axis can be satisfied only with periodic solutions. The algebraic 
determination of these solutions is performed and sufficient positivity conditions 
obtained. They are planar waves propagating with the time but a strong absorption 
occurs. An analytic example is obtained for which the current J is asymptotically 
vanishing but the waves become non-propagating. 

In P 4 we determine and discuss the positive solution along the full x axis (a larger 
class exists, positive along a semi-axis). They are written as a linear superposition of 
two solitons (or two planar shock waves) and a simple coupling condition between 
them is sufficient in order to satisfy the non-linear constraint of (1.1). Instead of a 
pure plane shock wave x + ct, c = p /  y invariant by translation, they are a superposition 
of two plane shock waves x + c,t, c = p, /  yi with a deformation of the shock profile 
when the time increases. At t = 0 or at small t, they have the usual shock profiles, but 
when t is infinite they relax towards Maxwellian equilibrium states. These shocks are 
not permanent in time and vanish with large times. 

In § 5 we introduce the mean free path E into the collision term and look at the 
limits E + 0 (Caflish 1983). Here these limits are constant absolute Maxwellians. For 
the periodic solutions ( t  # 0) we find one limit, two for the planar shock waves and 
for the non-planar shock waves of 0 4, we find three different limits which correspond 
to three different domains of the x, t plane. So for the present exact solutions these 
limits are non-uniform in x, t (except for the periodic solutions at t # 0). Further, 
there exist initial layers (at t = 0 the solutions are E dependent) and shock layers. 
There is no analytic E expansion around E = 0, while a natural parameter for such an 
expansion seems to be exp( - 1/ E ) .  

2. ‘Solitons’ and possible ‘bisolitons’ 

The solitons, solutions with one exponential variable, are easily deduced. They corre- 
spond to one-dimensional space in the variable x + constant x t and (1.1) becomes 
integrable. As a pedagogical example we quote the results in table 1 because the 
bisolitons will be studied in a similar way. Starting with the ansatz 

V =  v o + v / A  

and A = 1 + w,  w = d exp( yx + p t ) ;  v, w, z being constants, we obtain the five relations 
of table l ( c ) .  We define y = v / w  as a new parameter and the solitons (table l ( d ) )  
depend on three parameters y ,  v o ,  wo (the arbitrary constant d allowing a normalisation 
at x = 0). 

When 1xI+oo, either A +  1 or A+-*;  in order to have V >  0, we must satisfy both 
v ,>O and v o + v > O  (the same applies for W , Z ) .  Consequently the mass N =  
Vi- W + 42, when 1x1 + m, has in general two different limits. These solutions represent 
planar shock waves without deformation of the profile when t is varying (look at a 
reference frame x + tp /  y ) .  In table 1( e )  we define they intervals for which the positivity 
is satisfied and in table l ( f )  some examples for which one of the asymptotic x limits 
corresponds to vanishing distributions (or an infinite shock). 
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Table 1. ‘Solitons’. 

( a )  Ansatz 
V = U,+ u/A,  W = w,+ w / A ,  Z = zo+ z /A ,  A = 1 + d exp(yx + p t ) ,  d > O+ A 3  1 ;  u,L 0 w o 2  0 (not U ,  = W O =  

0 ) ,  zo*O, U, w, z, p, y real. 

( b )  Asymptotic positivity conditions 
y x + w  or p > 0, t+a, A + m ,  ( V  W Z ) +  (U, wo 2,) 
yx+-cc,orp<O, t + c c , , A + l ,  ( V W Z ) + ( v , + o > O  w , + w > O  z,+z>O) 
Asymp. pos. + positivity V t  3 0 Vx E R (due to VA = u,A + U 3 U, + U .  . .). 
( c )  Relations 
( 1 )  z ,=Ju ,w ,>o ,  ( 2 )  z ( U + w ) + U w = o ,  (3) 2 p + u + w + z = o ,  (4 )  y ( u + w ) + p ( u - w ) = O ,  ( 5 )  u,w+w,u+ 
22( p - zn) = 0 

( d )  Algebraic solutions 
def  y = ( u / w )  j = l + y + y 2 > 0 ,  i = z / w  r = y / w  p = p / w  ( 2 )  F - = - y / ( l + y ) ,  (3)  2 p ’ = - j / ( l + y ) ,  
(4) 2 7 = 9 ( y - l ) / ( l + y ) ’ ,  ( 5 )  w = - ( l f y )  [ ( ~ , + w , y ) ( l + y ) + ~ z ~ y ] / y ~ .  From U,. w,, y given+z,, w, U, z, 
Y, P. 

( e )  Physical solutions 
U,+ U = -pn[ 1 +( w n / u o ) i ’ 2 (  1 + y ) 1 2 / j >  o if y < 0, w,+ w = -wo[y  + ( I  + y ) ( u , /  ~ , ) ” ~ ] ~ / y j >  o if y < 0, 
z,+ z = U,[( 1 + ~ ) ( W ~ / U , ) ~ ’ ~ +  1 ] { 1  + y [ ( w , / ~ , ) ” ~ +  1 ] } / j >  0 either if y < - 1  - ( U o /  or if O >  y > 
- l / [ l + ( w , / ~ , ) ” ~ ] .  Ex: w , / u O = 1 + y < - 2  or - f < y < O ,  w 0 / u 0 = 4 + y < - ~  or - f < y < O ,  u,=O y < - 1 ,  
w,=o - l < y < O .  

(f) Simple examples 
( 1 )  u,=z,=o, w,>o,  y < - 1 ;  w = - w 0 ( l + y ) 2 / j < O ,  u = w y > o ,  z = w , ( l + y ) y / j > O ,  

For instance we look at wo = uo = 0 (table l ( f ) ,  (2)) or an infinite-Mach shock at 
x = --CO. Assuming further that at +cc the distributions V ,  W, Z are the same we find: 
y = -;, p = -u0/2, y = -3u0/2. For the mass we find either uo at -CO or 4u0 at +CO. 

This is the Broadwell shock solution. 
To search for the possible bisolitons we introduce w,  = d, exp( y,x + p , t )  and require 

p1 y2 - p2y1 # 0 for a true two-dimensional solution. We prescribe that when d, = 0, the 
bisoliton is reduced to the above soliton for d , ,  i = j .  The denominators must be of the 
type A = 1 +Xu, + w , w 2 P ( w , ,  U,) ,  with P a polynomial. For simplicity we assume that 
P is a constant p and substitute the ansatz (2.1) into ( 1 . 1 )  where now U, w, z are linear 
polynomials in U , ,  w 2 .  In appendix 1 for the 3-density ( 1 . 1 )  model we require that 
such an ansatz satisfies the two linear conservation laws (1.2) and find that only p = 1 
is not excluded or A = ( 1  + w , ) ( l +  w z ) .  This result means (at the linear level of ( 1 . 1 ) )  
that the only possible bisolitons are a linear superposition of two solitons: 
V =  uO+ZU,/A, W = W O  + Z w,/A,  Z = z o + Z z , / A ,  A, = 1 + w ,  (2.2) 
U,, w,, z, being constants. The non-linear constraint of (1.1) will give the supplementary 
condition for the coupling of both solitons. We notice that the same result, p = 1, 
holds for the 4-density model (see appendix 1)  with two conservation laws. For the 
2-velocity model and the result p = 1 we must include a part of the non-linear constraint 
(Cornille 1987). In 9 3 the soliton components are complex conjugate, and real in § 4. 
Consequently, in § 4 the solutions will represent generalisations of the planar shock 
waves while in § 3 they will have a different significance. 
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3. 'Bisolitons' with complex yi , pi: periodic solutions 

The bisolitons have denominators of the type A i  = 1 + di exp( yix + p i t ) ,  i = 1,2 .  We 
assume A ,  = AT and in a later stage Re yi = 0 which will lead to periodic solutions. 

W = w0+2 Re w / A  
(3 .1)  

A =  l + d  exp(yx+pt) 

that we substitute into ( 1 . 1 ) .  Requiring that the coefficients of A-',  A-2, lAIp2 are zero, 
give six relations (see table 2 ( b ) )  in general complex, and ten real constraints among 
the thirteen real parameters uo,  wO,  zo ,  U, w, z, p, y. A priori the solutions depend on 
three arbitrary parameters. In addition d = d,+ id, (which does not appear in table 
2( b ) )  gives two other arbitrary parameters. 

We start with the ansatz 

V =  u0+2 Re u / A  

uo, wo,  zo real 

Z = z0+2 Re u / A  

U, w, z, p, y complex 

Table 2. 'Bisolitons' with complex y,, p,. 

( a )  Ansatz 
V =  u,+2 Re( u/A), W = wo+ 2 Re( w/A), 2, = 2,+2 Re(z/A), A = 1 + d exp( yx+pt) ,  y = yR+ iy, same for 
P, 0, w, 2. 

( b )  Relations 
(1) z , = * G , ( 2 )  IzI2=Re(uw*),(3) ( ~ + w ) z + o w = O ,  ( 4 ) 2 p + u + w + z = 0 , ( 5 )  y ( w + u ) + p ( ~ - w ) = O ,  

( c )  Algebraic solutions 
def  ye ' "=v/w,  i = z / w ,  p = p / w ,  y = y / w ,  ?=Z,+i? (2) 4 c o s a = - A + + ,  A = y + y - ' ,  
(3) f = - c o s a ( y + e ' " ) ,  (4) 2 p = s i n a ( e ' " - y ) i ,  (5) yR=4sin2a  ( 2 c o s 2 a + c o s 2 a ) ,  y l = - Y R i R / f l ,  (6) 
U,+ w,y el" -2zod+2w(A,+iBo) =0 ,  A,= s in22a/4,  Bo= sin 2a(y2-cos  2 a ) / 4  (i) y,# 0; w = 
w(y,o,, wo)+z=?w, p = p w ,  y = y w ;  ( i i )  Y R = O + z = z R  real, wl=wRYR/yI ,  (6') ~ ,+w,ye ' " -2z , i+  
2w,(A,+iB,)=O, 2A,I,= - y c o s a s i n 2 a ,  B ,  =-A , (1+y(2cos2a- s in2a) / cos  a ) / y s i n a  (6') U,+ woA,= 
2z,B,, A , = c o s a ( l + 2 y c o s a ) / ( c o s a - y ) ,  B , = ( 2 c o s Z a - 4 y s i n Z a  c o s a + y 2 ) / y ( c o s a - y )  from (6") 
U , / W , = ( B , * J B ~ - A , ) ~ ,  * if w , S O ,  +uo(w0,y) ;  from (6') + w R a n d  wI, then z = w z ,  p = w p ,  y = w p .  

( d )  Asymptotic positivity 
( i )  w,>O and any y value: pR>O, ( V ,  W,Z),,,,,=(u,>O, wo>O, r,>O) ex: y=O.8 ,  w,=l ,  o0=2.16, 
zo=1.47, p=3.7-0.89i, y=-i2.6,  ~ = - 8 . 8 - i 3 . 1 6 ,  w=-6.15+i4.9, z=4 .2 .  (ii) w,<O and any y value: 
p R < O ,  (V, W , Z ) a r y m p = ( ~ O + 2 ~ R ~ 0 ,  w0+2w,>O, z,+Zz,>O); u,<O, z,>O, u,>O, w,>O. ex: y=1.2 ,  
wo= -1, U,= -0.12, zo=  1.1, p = -0.41 -O.OOSi, y =0.28i, U = 0.67- i0.36, w = 0.61 + i0.52. 

(6) vow+ wOu+2z(p - z,)=O. 

3.1. Determination of positive solutions (table 2 )  

Notice that due to the relation (1) in table 2 ,  wo and u0 have the same sign. In order 
to build up the solutions we proceed in two successive steps: first we establish the 
algebraic solutions and second we take into account the positivity V >  0, W > 0, Z > 0 
requirements for the physical solutions. 

For the algebraic determination of the solutions (table 2 ( c ) ) ,  it is convenient to 
introduce intermediate variables y e'", 2, p ,  7, ratios of U, z, p, y by w and we choose 
y ,  wo,  uo as the arbitrary parameters. Then a, F, p ,  7 are y-dependent functions up to 
the relation ( 6 )  where two possibilities occur. 

(i)  We assume Re y = yR # 0 and the solutions are non-periodic. From any given 
uo, wo,  y we find w and from the intermediate variables we reconstitute U, z, p, y. Let 
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It follows that if we perform the same transformation for dl, the imaginary part of d, 
then Re(u/A) is unchanged (similarly for Re(w/A), or zR/A). For either wo=O or 
uo = 0 we have analytically proved from (6”)-(2) that no solution exists. Afterwards 
we consider y as the continuous parameter and wo = * l .  In order to avoid A = 0, from 
Il-ldlexpp,?l<IAl, we assume IdJ>1  if p R > O  ( jd l< l  if p R < 0 ) .  

For the physical determination of the solutions we look first at the asymptotic 
positivity constraint (table 2( d)) .  If pR > 0 or pR < 0 we investigate lim,+m ( V, W, Z )  
and find that either \AI + 00 and we must have uo > 0, wo > 0 or A + 1 and necessarily 
uo + 2uR > 0, wo + 2 w R  > 0, zo + 2 z R  > 0. These two asymptotic states, either uo > 0, wo > 0, 
zo> 0 or uo+ 2uR> 0, . . . , are the corresponding Maxwellians of the discrete model 
where the velocities have fixed values. We obtain a first limitation on the class of 
possible solutions of table 2( c ) .  Letting y be a continuous parameter, wo being positive 
or negative, we have numerically checked the signs of yo, wo, zo, pR, uo + 2uR, wo + 2wR, 
Zo+kR. The results are quoted in table 2(d) .  For wo> 0, uo> 0, and any value for y ,  
we find that the acceptable physical solutions at t = have pR > 0, zo > 0 while for 
wo < 0, uo < 0, we find zo > 0, pR < 0 with the asymptotic constraint uo+ 2uR > 0, . . . , 
satisfied. In both cases, we notice that the acceptable solutions have zo = ( ~ ~ w ~ ) ’ ’ ~  
while the other determination ( - U ~ W ~ ) ~ ’ *  is ruled out. Consequently for the quadratic 
equation deduced from (6”), only one of the two possible solutions is physically 
acceptable. As an illustration in table l (d ) ,  we quote the numerical values for two 
examples y = 0.8 and 1.2. 

The last physical requirement is the positivity at t = 0 and we introduce the two 
arbitrary integration constants d = d R +  id, which, until now, have not been discussed. 
Firstly we investigate the class pR > 0, uo> 0, wo > 0, zo > 0, discussing the positivity of 
the V density, the argument being the same for the other ones. Writing 

we notice that the RHS has a lower bound: 

and deduce the following. 

Proposition 1. For the class of solutions wo> 0, uo> 0, zo> 0, p R >  0, a sufficient 
condition in order that (V ,  W, Z )  are positive densities is: 

“1 = U “ l o =  00 

“2 = w “ 2 0  = WO 

“3 = ZR “30 = Zo. 
Secondly we look at the second class of solutions wo < 0, uo < 0, zo> 0 and pR < 0. 
However we must treat V ,  W and Z differently. Starting with (3.2) written for either 
V, W or Z we deduce the two lower bounds: 

(3.3a) 
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and a similar one for V e  W, 

(ii) (3.3b) 

We recall that due to the asymptotic positivity ( t  + CO), the sum of the two first terms 
at the RHS of (3.3a, b )  are positive. Then [dl must be sufficiently small in order that 
the positivity of the RHS of (4a, b )  be maintained. 

Proposition 2. For the class of solutions wo < 0, uo < 0, z0 > 0, WO + 2wR > 0, 00 + 2uR > 0, 
zo+2zR> 0, pR<O, a sufficient condition in order that ( V ,  W, Z )  are positive densities 
is 

Id1 < inf( N I  

P 1 = u  

N2, P) 

P I 0  = U0 P 2 =  w P 2 0  = WO 

P =  ( 1+- 121) - [( 1+- ~ ~ ~ ) 2 - ( l + ~ ) ] i ' z ,  

As an illustration, in figures l (a ,  b ) ,  we plot the relaxation curves in the two cases 
wo = 1, y = 0.8, d = 15( 1 + i )  and wo = -1, y = 1.2, d = 0.04( 1 + i), for which the numeri- 
cal values of U, w, z, uo, wo ,  zo, p, y are given in table 2(d). 

3.2. Analytical solution 

There exists a simple case for which we ca; easily write down an analytical solution. 
If we start with y = 1, then cos (Y = (-1 +J3)/2,  in table 2(c), A2 = -1, B2 = 0 leading 
to the simple solution uo= wo.  In table 3(a)  we write down the solutions in both the 
wo>O and wo<O cases. The sufficient conditions on Id/, maintaining positivity for 
t 2 0 ,  have been calculated using the theoretical bounds of propositions 1 and 2. 
Constructing numerical solutions of table 3( a) ,  we have verified that these constraints 
on /dl are relevant. Let us notice that for this particular solution, pI = 0 and the time 
dependence is real in A. The two possibilities *a correspond in table 3(a)  to the 
changes *($)"4. If simultaneously we choose d + d* then in final U, w, A +  U*, w * ,  A* 
and we have the same values for Re u/A,  Re w/A.  

3.3. Physical interpretation of the periodic solutions 

We write down the total density N = V +  W + 4 Z  and current J = V -  W and look at 
their large time behaviour N = Neq + SN, J = Jeq + 6J. SN and 6J are small perturba- 
tions around the equilibrium states N (  t = 00) = Neq,  J (  t = CO) = Jeq. We notice that 
depending whether p R  > 0 or p R  < 0 we have Neq = U, + wo + 4z0, Jeq = uo - wo or Neq = 
uo+wo+4zo+2Re(u+w+4z),  Jeq=uo-wo+2Re(v-w) and find in both cases: 
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OIL 

I 1 I 1 I 

0 0 2  0 4  0 6  08 1 0  
l l x 1 2 n = x '  

Figure 1. Plots of V(x', I ) ,  W ( x ' ,  I ) ,  Z(x ' ,  I )  against x ' =  yIx/27r for different t values, 
X ' E  [0,1] corresponds to one period in the x variable. The numerical values of the 
parameters of the solutions are given in table 2 ( d ) :  ( i )  and ( i i ) .  

( i )  ( 1 - a ) :  w , = 1 ,  y = I u / w l = 0 . 8 , d = 1 5 ( l + i )  

( i i )  ( 1 - b ) :  w o = - l ,  y=1.2, d = 0.04( 1 + i ) .  
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AN and Aj are positive constants and $N and 4J are constant phase factors. Depending 
on whether pR > 0 or pR < 0, we have 

AN exp(i4,) =(U+ w + 4 z ) / d  Aj exp(i+J) = ( U +  w + 4 z ) / d  PR>O 
( 3 . 5 )  

AN exp(44 , )  = -(U+ w + 4 z ) / d  Aj exp( -i4J) = ( w  - v ) d  PR<0* 

Clearly 8N and 8, represent propagating ( p, # 0) and damped ( pR # 0) plane waves. 
Can they be compatible with damped sound waves? In that case we must have Jeq = 0 
which means no transport of particle flux. Looking at the periodic solution we find 
that this is possible only if uo/ wo = 1 ( wo > 0, pR > 0 and w,, < 0, pR < 0). The correspond- 
ing periodic solution is the analytic one studied in 03.2 (in table 3 we can verify in 
both cases that J,,=O). Unfortunately in that case p,=O and the plane waves are 
non-propagating. 

4. ‘Bisolitons’ with y i ,  pi real: non-planar shock waves 

We substitute the linear superposition of two (2 .2)  planar shock waves, V = v o + E v , / A , ,  
W = .  . . , A, = 1 + U , ,  U ,  = d,  exp(y,x+p,t) ,  into the system ( 1 . 1 )  and obtain (table 4 ( b ) )  
for each soliton component the five soliton relations of table l ( c ) .  A supplementary 
symmetric coupling soliton relation 2z2z1 = u1w2+ v2wl appears (from the vanishing of 
the ( AIA2)- ’  coefficient) and represents the constraint, coming from the non-linear 
part, for the existence of a double plane shock wave. 

Table 4. ‘Bisolitons’ with real y,, p, .  

4.1. Algebraic determination and positivity of the solutions 

As in the soliton case, we define two new parameters y ,  = v , / w ,  and intermediate 
variables ,TI, PI ,  7, ratios of z , ,  p,, y, by w, (table 4 ( c ) ) .  The original parameters U,, w, ,  
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z i ,  pi ,  yi are deduced from the four y i ,  uo,  wo ones. However y ,  and y ,  are linked by 
the above coupling relation (see figure 2 ( a ) )  leading to two determinations for y ,  

Y : = [ - ( 1 + Y : ) * ~ 1 / 2 ( 1 + Y , )  ~ = ( 1 - ~ , ) ~ - 1 2 ~ :  (4 .1)  

and finally the bisoliton solutions depend on the three parameters uo ,  wo,  y , .  
The general positivity discussion in terms of these three parameters is not simple. 

However, general considerations for the 1x1 +. 00 limits are in order. We only have two 
possibilities. 

(i)  y,y,<OandwhenIxl+.co,(V, W , Z )  havethetwolimits(uo+ui, w , , + w i , z o + z i )  
i = 1,2 which must be non-negative. 

(ii) y1y2>  0 and when 1x1 +CO, (V, W, Z )  have the two limits ( u o ,  w o ,  zo) and 
( u o + Z u i ,  wo+Zwi ,  zo+Z,zi)  which must be non-negative. 

For an analytical discussion, (i)  is easier than (ii) because simple expressions exist 
for uo+ ui, . . . (table 4 ( d ) )  but not for uo+Z vi ,  . . . . For the positivity it is unnecessary 
to discuss the different possible pi signs. If the lxl+00 positivity is satisfied, we can 
manage the di constants in wi such that the solutions remain positive for all x at t = 0. 
Then the Broadwell system cames positivity along all t > 0 values. 

As an illustration we discuss the positivity for a simple (i) case y ,  > 0,  y 2  < 0 with 
uo > 0, wo> 0, zo> 0. We want to obtain the conditions uo+ vi > 0, . . . and the corre- 
sponding domain into the y , ,  uo, wo space when 1x1 +CO. From the results uo+ ui > 0, 
wo+ wi > 0 we see yi < 0, i = 1,2 and notice from figure 2 ( a )  the restrictions on y ,  and 
y,. We note that the signs of zo+ zi and yi depend only on two parameters y ,  and 
uo/ wo. Furthermore zo+ zi and y1 have two and five sign changes respectively (table 
4 ( d ) ) .  The pi signs are obtained from pi = y i ( l + y i ) / ( l  - y i ) .  In figure 2 ( b )  we plot 
the uo/ wo, y ,  domain such that y1 > 0, yz < 0, pi > 0, U,+ ui > 0, . . . and for which the 
1x1 + 00 positivity is satisfied. Noting that the coupling between y ,  and y ,  is symmetric, 

Figure 2. ( a )  Plot of the coupling relation y2 against y ,  where 

) 2(  1+y,  
1 - ( l + y : ) i J - d  y; =- 

D = ( 1 - ~ , ) ~ - - 1 2 y : .  

( b )  Plot of the uo/ wo, y, domain for which yI > 0, y2  < 0, p, > 0, WO+ w, > 0, VO+ U, > 0, 
zo+z,>O, i = l , 2 .  
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we find the solutions y, < 0, y2 > 0 . . . from the (figure 2( a ) )  domain with the change 
y ,  ~ y , .  In order to obtain the positivity Vx at t = 0 we rewrite 2 

ZAIA2 = ( z o + I ; ~ i )  +E ( zO+ t j )wi  + Z O W ~  w2 j # i  (4.2) 
I 

For the present case only the first term can be negative. On the RHS of (4.2) a trivial 
positive lower bound is obtained Vx > 0 or <O using the fact that yiyj < 0. For the 
d, > 0 constants a sufficient 2 > 0 condition is 

d, > -( ZO + X z,)/ ( ZO + ~j ) i # j .  (4.3) 

For the positivity of V ,  W, we replace zo,  zi by uo,  U,, . . . . An example of such a solution 
is presented in figure 3 with uo/ wo = 0.1, y ,  = -0.2353 (inside the figure 2(b) domain) 
and will be discussed below. 

‘ >A+, 4 0  

-1 0 0 10 

10 0 -10 
I 
0 10 -1 0 

X X 

Figure 3. Non-planar shock waves V, W, Z, N against x: uo= 1, w0= 0.1, y ,  = -0.2303, 
yI = 0.85, y2  = -0.35, pI = 0.534, p2 = 0.073, u0+ vI  = 0.33, w0+ wI = 0.0009, z,+ z1 = 0.017, 
U,+ U~ = 0.035, WO+ W2 = 1, Zof  2 2  =O.I9. 

As an illustration we discuss the positivity for a simple (ii) case: wo=O, uo=O.l ,  
zo = a. Seeking y1y2 > 0 we find y ,  < -2.013, and for these values y 2  = y: < -0.375, 
y ,  > 0, y 2  > 0, p, < 0, p2 > 0. Further the positivity 1x1 --* CO is satisfied due to uo + Xui > 0, 
wo+ . . . , and when t + CO, the Maxwellians uo+ o,, wo+ . . . are positive. Choosing an 
explicit example yI = -8.2 we find: U, = 6.37, w ,  = -0.77, z ,  = 0.88, u2 = 0.155, w2 = 
-0.195, z 2 =  -0.79, y ,  =4.14, y2=3.6,  p,  = -3.2, p 2 =  0.404 and with d ,  = d ,=  1 ,  we 
have verified that the positivity for all x and t 3 0 is satisfied. The physical interpretation 
is the same as in (i). 

4.2. Physical interpretation 

As in the soliton planar shock waves, for the bisoliton superposition of two such waves, 
the limits x + fa of V ,  W, Z are different. The mass N = V +  W +  4 2  has a jump 
between these two limits. At t = 0 or t small, the profiles are very similar to the planar 
shock wave ones. However, when t increases and x remains fixed, a deformation of 
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the profile occurs, The translation invariance x + tp/ y disappears for a superposition 
xi  + tpi/yi of two planes (the velocities of the Broadwell model being *l ,  it follows 
that physically significant solutions must have Ipilyil < 1). When the time is infinite 
and the space is finite then V ,  W, Z, N relax towards their respective constant Maxwel- 
lians. In figure 3 we present a numerical example of the deformations of the shock 
profiles and the relaxations towards equilibrium. For this example at small t and 
x = -CO we observe a strong shock with wo+ w1 = 0.0009, z,+ z1 = 0.017, uo+ ul = 0.33 
and  the Z, W density populations are negligible compared to the V one. In contrast, 
at x = +CO, none of them is negligible. When r increases we observe for finite spatial 
values an  extending plateau which becomes the equilibrium Maxwellian state when t 
is infinite. 

4.3. Multisolitons 

Can we have more than bisolitons? Starting (see table 4 ( b ) )  with V =  uo+Cu, /A , ,  
W = w,+. . . , i = 1,. . . , n, n 3 2, we find for each i the five soliton component relations 
plus the n (  n - 1) /2  coupling relations which, written with the y, = U ! /  w, parameters 
become: y , + y , + y ~ + y ~ + y , y , ( y , + y , ) = O .  Fromtherelations pl/pJ = ( l + y ! ) / ( l  -yl)  we 
see that the soliton components are different if the y, are different. From the coupling 
relations and  y, real, this is possible only for n = 2. As for the 2-velocity models we 
cannot have more than bisolitons. 

5. Limits of the solutions when the mean free path goes to zero (Caflish 1983) 

Let us define local Maxwellian ( L M )  solutions such that ZtM - VLM WLM = 0, and  the 
associated mass NLM and current J L M .  From the identity NLM+3(VLM+ WLM) = 
2(N:M+3J:M)1’2 we see that these LM satisfy the Euler equations: i.e. the mass 
conservation (1.2) and  the conservation of momentum becoming: J ,  + 
{ N[2( 1 + 3J2/NZ)”2 - 1]/3}x = 0. Here the limits are constant absolute Maxwellians 
(AM)  which satisfy trivially these equations. Note that for the periodic solutions we 
have one AM ( r  + a), two A M  for the planar shock wave (x  + TOO) and three for the 
non-planar ones (x + Fa, f + CO). 

We introduce the mean free path E > 0 into the collision term: (Z2- V W ) / E  and 
remark that in (1.1) E disappears with the change of variables: t + t / E ,  X + X / E .  Let 
us call V,, We,  Z,, N E ,  J ,  the &-dependent solutions. They are those determined in the 
previous sections with the change t / E ,  X / E .  From this rescaling of t ,  x it follows that 
the positivity properties are the same. We discuss the limits of N E ,  J,  when E > O +  0 
and find that they are AM (we discuss only lim N E ,  since lim J,  is then obvious). 

( i )  Periodic solutions. The change is: A E  = 1 + d exp( p R r / E )  exp i( y ,x  + p , t ) / E  and 
we find two possibilities for t # 0 (for t = 0, the limit E + 0 does not exist). Either we 
havep,>Oandlimit  l / A ,  =0,  N ~ ~ = ~ ~ + w ~ + 4 Z ~ o r ~ ~ < O a n d l i m i t  l / A , = l ,  N A M =  

Vu,+ w,+ z0+2 Re(u+  w + 4 z ) .  For such solutions one limit exists: N A M ,  J A M  which 
is an  absolute Maxwellian. 

(ii) Planar shock waves. The change is AE = 1 + d exp( yx + pt)/  E and we find two 
different limits for two different x, t subdomains of the half-plane x, t. Depending on 
whether yx+p tSOwef inde i the r  N A M =  u o + w , + 4 z , o r ~ o + w o + 4 z 0 + u +  w + 4 z  which 
are AM. 
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(iii) Non-planar shock waves. The changes are Ale  = 1 + d, exp( y,x + p , t ) / E .  In the 
t ,  x half-plane the lines y,x + p,t = 0 determine three different domains characterised 
by the signs of y,x + plt, i = 1,2. Associated with these three domains exist three different 
limits which are AM. 

As a first example we consider the class (i) of 0 4.2 such that yI  > 0, p1 > 0, y2 < 0, 
p1 > 0. We define 6, = y,x + p,t and find 

6 ]  < 0, a,> 0 

S l > 0 , 6 , > O  N A M = U O + W O + ~ Z O  

6,>0,6,<0 N A M = u o +  W O + ~ Z O + U ~ +  w2+4z2. 

N A M  = uO+ wo+4zo+ V I  + ~ 1 + 4 ~ 1  

For the second example (4.2, class (ii)) y1 > 0, p1  < 0, yz> 0, p2> 0 there also exist 
three different domains and limits. 

In conclusion these limits E + 0 are non-uniform in x, t and E appearing in t e r m  
like exp( St/  E ) ,  no analytic expansion exists around E = 0 while a more natural parameter 
could be exp(-l/e).  In this paper we do not go further than these simple remarks. 

6. Conclusion 

For the one-spatial 2- and 3-density models, using the same algebraic method in both 
cases, we have obtained explicit two-dimensional solutions (beyond the known mathe- 
matical existence proofs) for a new class of non-integrable equations. The method 
works for the 4-density model (appendix) and presumably for all velocity models, 
however the positivity can be studied only case by case. It is remarkable that for 
spatial discrete mode (without boundary conditions, sources and sinks or external 
forces) positive exact two-dimensional solutions relaxing towards Maxwellians exist 
(in such a case no spatially exact solution is known for the continuous B E ) .  

For the 2-velocity model, the most interesting exact solutions are the periodic 
damped sound waves while for the 3-density Broadwell model they are perhaps the 
two-dimensional non-planar shock waves which generalise the planar shock waves 
obtained by Broadwell more than twenty years ago. 

However, in the future, the most interesting aspect of the discrete models may be 
the possibility of introducing more than one spatial dimension. If it is true that 1 + 1 
non-planar shock waves are more realistic than plane waves, I think that the important 
new step should be the determination of exact ( 2  + 1)-dimensional shock solutions. 

After the completion of this work, I became aware of a recent determination by 
Golse (1985) of self-similar solutions (in the variable x /  t )  not studied here. 
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Appendix. Possible ‘bisolitons’ for the 3- and 4-density models 

A1 

Let us assume that three functions V, W, Z of the variables 1, x, defined by 

V =  U o + u / A  W =  W O +  W / A  Z = zo+ z/A A =  ~ + ~ W ~ + / . L W ~ W ~  
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U = u@J + Ew,u, w = w,+zo ,w ,  z = zoo + z w , z ,  (AI)  

w,  = d, exp( YJ + ~ , t )  

are ( 1  + 1)-dimensional solutions of two differential equations 

( V -  W ) , + ( V +  W),=O ( v+  a Z ) ,  + ( v+  PZ), = 0 a 2 Z P '  (A21 
a, P being constants. We shall show that necessarily p = 1. We remark that in a 
two-dimensional space: 

P I Y 2 - P 2 Y l + o  (A3) 

- u ( A ,  + A x )  + w ( A ,  - A,)+A(U,  + U, - W ,  + w , ) = O  (A41 

u ( A ,  + A , ) +  z ( a A ,  + P A x )  - A ( U f  + U,+ Q Z ,  + P z X )  = O .  (A5) 

and also that (A2) can be rewritten: 

Al.1 

p f 0, 1 :  (A3) and (A4) are polynomials in w ,  and we require that the coefficients of 
o,, wf, opf ,  w l w 2  are zero: 

ut ( P, + 7, 1 = w,(  PI - Y, 1 
U , ( P , - Y t ) = ~ , ( P , - Y , )  

U,( P, + Y , )  + z, (VI + P Y , )  = 0 

U, (aPz + P Y !  ) = 0, (ap, + PY,  ). 

( p  - 1 )Xu,( PI + Y , )  + w, (  Y ,  - P , ) )  = 0 
(A4') 

('450 
( p  - l ) % u , (  PI + Y , )  + Z , ( P Y ,  + .P I ) )  = 0 

The last two relations (A4') and (A5') violate (A3). 

A1.2 

p = 0: Without loss of generality we can assume in ( A l )  u2 = w2 = z2 = 0. Requiring in 
(A4) and (A5) that the coefficients of w l ,  w 2 ,  w I w 2 ,  o: are zero: 

woo( P2 - Y 2 )  = uoo( P2 + Y 2 )  

f J 1 (  P2 - Y 2 )  = uoo( P2 - P1+ Y l  - Y 2 )  

W I ( P z - P I +  Y 1 -  Y 2 )  = V l ( P 2 +  Y 2 - P l -  Y l )  
(A4") 

Z , ( ~ P 2 + P Y 2 ) + ~ o o ( P * + Y r )  = o  
ZI(Q(P2 - P l )  + P ( Y 2  - Y l ) ) +  U 1 ( P 2 - P 1 +  y2-  Y l )  = 0 

u , ( a p 2  + P Y 2 )  = uoo(a ( PZ - P I )  + P (  Y r  - Y l ) ) .  

(AS") 

Still the two last relations (A4") and (AS') violate (A3). In conclusion only p = 1 is 
possible. 

A2. Application to the 3-density Broadwell equation ( 1 . 1 )  

The two conservation laws (A2) are satisfied with a = 2, P = 0. 

A3. Application to the 4-density Broadwell models 

There exist two such models. First the Broadwell model was studied by Tartar (1975) 
and Beale (1985) 

(A61 U,,+ U l x  = U,, - U,, = - U 3 ,  = -U4, = b U 3 U 4 - a U ,  U 2 .  
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If we define V = U , ,  W = U,, 2 = U 3 ,  the conservation laws (A2) are satisfied with 
a = 1, p = 0. Second the planar velocity model was studied by Gatignol (1975) 

No, + No, = N31- N3x = - 2 N , ,  - NI, = -2N2, + Nz, = 2B( NI N2- NoN3)/3.  

If we define V =  N o ,  W = N 3 ,  Z = N I ,  the conservation laws (A2) are satisfied with 
LY = 2, p = 1. 

In conclusion the only possible bisolitons for the one spatial 3-  and 4-velocity 
Broadwell models are with CL = 1, which means a superposition of two solitons. 

(A7) 
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